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The formal [2+ 2 + 1] cocyclization of alkenes, alkynes, and  Scheme 1. Synthesis of Five-membered Carbonyl Compounds

CO by transition metal complexes, represented by cobalt complexes,i@ the [2 + 2 + 1] Cocyclization Reactions

(known as the PauserkKhand reaction) has been accepted as one Vi \\\ Q
of the most powerful, convergent, and atom-economical methods @) e

for the construction of cyclopentenones (path a in Schem&any 0 0
advances related to this method have recently been reported, x// \\\ x/?
including the development of catalytic versions of this reaction. ®) G (X=0,RN)

Allenes have also been used as an alkene partner in this cocycliza- K\ © Y ©
tion reaction to give 4- and/or 5-alkylidenecyclopentencnés. c \ \
carbonyl or imino moiety can also be used in place of a carbon © x// c A (X=RN,Y=0,RN) )i}?
carbon double bond to givelactone$ or y-lactams; respectively o o)

(path b, Scheme 1). If heterocumulenic compounds such as .
carbodiimides and/or isocyanates can be used in the catalytic [2 Merization of2ato hexan-propylbenzene, and the only product
2 + 1] cocyclization with alkynes and CO, it could lead to a new détected by GLC wasa A higher CO pressure (over 5 atm)

approach for the construction of novel heterocyclic compounds, as drastically suppressed the reaction to result in a low yiel@zf
a heteroatomic variant of the Pausdfhand reaction (path c, Conse_quently, when the reaction of ph(_enyl |so_cyanhdae 30
Scheme 1). mmol) with 4-octyne 2a, 1.0 mmol) was carried out in the presence

of a catalytic amount of R(CO);, (0.033 mmol) in mesitylene
(3.0 mL) at 130°C for 42 h under 1 atm of CO, the corresponding

intramolecularcocyclization of alkynecarbodiimides with CO. Two m_aleirr_]ide, '1-phenyl-_3,4-dipropylaquine-2,5-diorfm)( was Obf
other examples of thiatermolecular(2 + 2 + 1] cocyclization of tained in an isolated yield of 82%. Various substrates were subjected

isocyanates, alkynes, and CO have required stoichiometric amountd® the_ present .[.z_ 2+ 1] cocyclization reaction und_er th? optimum
of metal complexes such as Fe(GDand Ni(cod) (cod = 1,5- reaction conditions, and the results are summarized in eq 1.

However, such processes are strictly limited to very recent
examples of the Mo(C@mediate@ and Cg(CO)-catalyzed

cyclooctadiene).At the outset of our study on ruthenium-catalyzed R Rus(CO)1a QA &
cocycllzat_lon reactlon_@, we found a novel anq rapid synthe&_s of R-N=Cc=0 + cO + || 0.033 mmol RN 1 )
polysubstituted maleimides by the ruthenium-catalyzed inter- mesitylene 3.0 mL R"
. . . 1 3.0 mmol 1 atm R" 130°C o

molecular [2+ 2 + 1] cocyclization of isocyanates, alkynes, and 2 1.0 mmol 3
_CO. A tradlt_lonal |ndu_str|al process fpr manufgcturlng malelmldes 1a:R=Ph 2a: R, R" = n-Propyl 3a: 82% (42 h)
is the reaction of amines with maleic anhydride obtained by the 1a:R=Ph 2b:R'=R"=Ph 3b: 98% (3 h)

. . . . 1a: R=Ph 2c:R'=Ph, R"=Me 3c: 97% (3 h)
oxidation of benzene or ghydrocarbons, which gives only 1a:R=Ph 2d: R = Ph, R" = Me;Si 3d: 96% (6 h)

H : H H 1b: R = 4-MeCgH, 2c: R'=Ph,R"=Me 3e: 94% (3 h)
unsubstltuted_ and/or sym_metrlcal_ly_ substituted malelm}él_é'ﬂne 1o R-4MeOCHl,  2¢:R'=Ph R"=Me 3 95% (3 h)
present reaction offers a highly efficient method for preparing novel 1d: R = 4-CICgH, 2c:R'=Ph, R" = Me 3g: 94% (3 h)

. . L . . . 1e: R = 4-CF3CgH, 2¢:R'=Ph, R" = Me 3h: 98% (5 h)
unsymmetrically polysubstituted maleimides in excellent yields with 1f : R = Biphenyl 2c:R'=Ph, R" = Me 3i: 94% (3 h)

i i H i i i 1 1g: R =n-CgH 2c:R'=Ph,R"=Me 3j: 95% (3h)
high selectivity, which are important building blocks in materials 1h R= cyoloCaHy; 26 R'= Ph, R" = Me 3k 96% (8 h)
sciencé? and bio|ogica| Chemstr% 1i : R = Adamanty! 2c¢: R'=Ph, R"= Me 31: 96% (12 h)

. . . 1j : R=t-Butyl 2¢:R'=Ph,R"=Me 3m:97% (18 h)
First, the effects of catalysts and the reaction conditions were
examined in the synthesis of maleimiBa from the reaction of Aryl-substituted alkynes such as diphenylacetylefb) (and

phenyl isocyanatéawith 4-octyne2a under 1 atm of CO. Among 1-phenyl-1-propyne2c) are more reactive than 4-octyriggj, and

the transition metal complexes, RGO), showed the highest  the reactions with phenyl isocyanatka)l were almost complete
catalytic activity. Ru(CO)PPh),, RuH,(CO)(PPHh);, and RuHCI- within 3 h togive 3b and3c in isolated yields of 98% and 97%,
(CO)(PPHh); also showed some catalytic activit§a( up to 28%), respectively (vide infra). With terminal alkynes such as 1-octyne
while [RuCKL(CO)],, Cp'RuCl(cod) [Cp*= pentamethylcyclopenta-  and phenylacetylene, however, a trace amount of the desired
dienyl], and CpRuCl(cod) [Cp= cyclopentadienyl] were totally maleimides was obtained<(@0%). We next examined the co-
ineffective. No3a was obtained with rhodium complexes, such as cyclization of a variety of aryl and alkyl isocyanates with 1-phenyl-
RhCI(CO)(PPHK);, Rhy(CO), Rhs(CO)6 and [Cp*Rh(COJ.. 1-propyne 2¢) and CO. No significant effect was observed for
Mesitylene is the best solvent. The reactions in toluene or decaneelectron-donating (4-Me1f) and 4-MeO {c)) and electron-
also gave3a in moderate yield (40% and 38%, respectively); withdrawing (4-Cl (d), 4-CF; (1€), and 4-Ph 1f)) substituents on
however, no reaction occurred in diglyme, 1,4-dioxaheN a phenyl ring in aryl isocyanate, while bulky alkyl isocyanattis (
dimethylacetamide, and propionitrile. The use of an excess (3 equiv) and1j) required a longer reaction time for the complete conversion
amount ofla relative to2a completely suppressed the cyclotri- of 2c.
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1,4-Phenylene diisocyanatdk) can be used for the present In conclusion, we have developed the first catalytic inter-
reaction, and the corresponding dimaleimid@a &nd 30) were molecular [2+ 2 + 1] cocyclization of alkynes, isocyanates, and
obtained in isolated yields of 71% and 44%, respectively (eq 2). A CO. This process provides a rapid and atom-economical method
slow addition of alkynes2b and 2d) to diisocyanate 1K) is for the synthesis of a variety of unsymmetrically polysubstituted
essential. No reaction occurred by simple mixing of alkynes with maleimides in one step. Isolation of azaruthenacyclopentenones and
diisocyanates, which suggests that the higher coordination ability a DFT calculation for the process of CO insertion are currently
of alkynes causes deactivation of the catalyst. under investigation.
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fer Experiment) measurements) with maleimi@e)( In addition,

2b (R = Ph)

3n 71% (R=Ph)
30 44% (R = 4- MeCSHA)

the reaction ofla with 2c was carried out in the presence of
Rus(CO);; catalyst under 1 atm dfCO to give the corresponding
13C-labeled maleimides3c-13C. 3C NNE measurement of the
carbonyl regions 08¢-13C clearly showed that the carbonyl carbon

at a higher field (169.6 ppm) was mainly derived from external

13CO (see, Supporting Information).

Considering the results obtained above, we postulated a mech-

anism for this newly developed intermolecular {2 2 + 1]
cocyclization ofla, 2¢, and CO, as shown in Scheme 2. The

reaction starts with the formation of azaruthenacyclopentenbnes

(major) andll (minor) by the oxidative cyclization ofa and2c
on an active ruthenium cente#* For aryl-substituted alkynes, this

oxidative cyclization process is thought to proceed significantly
faster than with alkyl-substituted alkynes to preferably generate an

o-aryl-substituted azaruthenacyclopentenone of ty(véle supra).

A 13CO-labeling experiment also suggests the formation of aza-

ruthenacyclopentenonek,and Il , and a-phenyl-substituted is
more favorable tha-methyl-substituted! (the ratio ofl andll

is estimated to be approximately 5 to 1 based on i@ NNE
spectrum o88¢-13C; see Supporting Information). Next, the insertion
of CO into a Ru-C(sp) bond rather than a RtN bond®
predominantly occurred to give azaruthenacyclohexenedidihes,
andlV, followed by reductive elimination to give maleimid8s

in an excellent yield with high selectivity and with the regeneration

of an active low-valent ruthenium species.

Scheme 2. A Possible Mechanism of Ru-Catalyzed [2 + 2 + 1]
Cocyclization of 1a, 2c, and CO to 3c

Ph=N=C=0
[Ru]
Ph’”
Pn
N Ph N o]
i [Ru] + [Ry]
ol [Ru} i >Im >i
O Fh 1 {major) i (minor)
ca. 5 ;

References

(1) (a) Stribing, D.; Beller, M. InTransition Metals for Organic Synthesis
2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany,
2004; Vol. 1, Chapter 3.13, pp 63%32. For recent reviews, see (b)
Bofaga, L. V. R.; Krafft, M. E.Tetrahedror2004 60, 9795. (c) Gibson,
S. E.; Lewis, S. E.; Mainolfi, NJ. Organomet. Chen2004 689, 3873.
(d) Gibson, S. E.; Mainolfi, NAngew. Chem., Int. EQR005 44, 3022.

(2) (a) Gibson, S. E.; Stevenazzi, Angew. Chem., Int. EQ003 42, 1800.
(b) Park, K. H.; Chung, Y. KSynletf 2005 545. (c) Laschat, S.; Becheanu,
A.; Bell, T.; Baro, A. Synlett2005 2547.

(3) (a) Cao, H.; Van Omum, S. G.; Deschamps, J.; Flippen-Anderson, J.;
Laib, F.; Cook, J. MJ. Am. Chem. So@005 127, 933. (b) Brummond,
K. M.; Curran, D. P.; Mitasev, B.; Fischer, S. Org. Chem2005 70,
1745. (c) Mukai, C.; Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.;
Kitagaki, S.J. Org. Chem?2005 70, 7159. For recent reviews, see (d)
Alcaide, B.; Almendros, PEur. J. Org. Chem2004 3377. (e) Ma, S.
Chem. Re. 2005 105 2829.

(4) (a) Crowe, W. E.; Vu, A. TJ. Am. Chem. Sod996 118 1557. (b)
Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L1. Am. Chem. S0d.996
118 5818. (c) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. 1. Am.
Chem. Soc1997 119, 4424. (d) Chatani, N.; Morimoto, T.; Fukumoto,
Y.; Murai, S.J. Am. Chem. S04998 120, 5335. (e) Chatani, N.; Tobisu,
M.; Asaumi, T.; Fukumoto, Y.; Murai, SI. Am. Chem. S0d.999 121,
7160. (f) Tobisu, M.; Chatani, N.; Asaumi, T.; Amako, K.; le, Y.;
Fukumoto, Y.; Murai, SJ. Am. Chem. So00Q 122, 12663.

(5) Chatani, N.; Morimoto, T.; Kamitani, A.; Fukumoto, Y.; Murai, $.
Organomet. Chenil999 579 177.

(6) Saito, T.; Shiotani, M.; Otani, T.; Hasaba,&terocycle003 60, 1045.

(7) Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, ®rg. Lett.2006 8, 83.

(8) Ohshiro, Y.; Kinugasa, K.; Minami, T.; Agawa, J. Org. Chem197Q
35, 2136.

(9) Hoberg, H.; Oster, B. WJ. Organomet. Chen1982 234, C35.

(10) (a) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, J. Am. Chem. Soc.
1997 119 6187. (b) Suzuki, N.; Kondo, T.; Mitsudo, ©@rganometallics
1998 17, 766. (c) Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.; Wada,
K.; Mitsudo, T.J. Am. Chem. So200Q 122 6319. (d) Kondo, T.;
Kaneko, Y.; Taguchi, Y.; Nakamura, A.; Okada, T.; Shiotsuki, M.; Ura,
Y.; Wada, K.; Mitsudo, TJ. Am. Chem. So2002, 124, 6824. (e) Kondo,
T.; Taguchi, Y.; Kaneko, Y.; Niimi, M.; Mitsudo, TAngew. Chem., Int.
Ed. 2004 43, 5369.

(11) Weissermel, K.; Alpe, H.-J. lindustrial Organic Chemistry4th ed.;
Wiley-VCH: Weinheim, Germany, 2003; pp 36875.

(12) (a) Pontrello, J. K.; Allen, M. J.; Underbakke, E. S.; Kiessling, LJL.
Am. Chem. So@005 127, 14536. (b) Zhang, X.; Li, Z.-C.; Wang, Z.-
M.; Sun, H.-L.; He, Z.; Li, K.-B.; Weli, L. H.; Lin, S.; Du, F.-S.; Li, F.-
M. J. Polym. Sci., Part A: Polym. CherR006 44, 304.

(13) (a) Kalgutkar, A. S.; Crews, B. C.; Marnett, L.Jl. Med. Chem1996
39, 1692. (b) Yang, W.; Auciello, O.; Butler, J. E.; Cai, W.; Carlisle, J.
A.; Gerbi, J. E.; Gruen, D. M.; Knickerbocker, T.; Lasseter, T. L.; Russell,
J. N., Jr.; Smith, L. M.; Hamers, R. Blat. Mater.2002 1, 253.

(14) (a) Hoberg, H.; Oster, B. WI. Organomet. Chen1983 252, 359. (b)
Stockis, A.; Hoffmann, RJ. Am. Chem. S0d.98Q 102 2952.

(15) (a) Hartwig, J. F.; Bergman, R. G.; Andersen, R.JAAm. Chem. Soc.
1991 113 6499. (b) Hanna, T. A.; Baranger, A. M.; Bergman, R.JG.
Org. Chem.1996 61, 4532.

JA066305G

J. AM. CHEM. SOC. = VOL. 128, NO. 46, 2006 14817





